Weighted Composition Operators and Dynamical Systems on Weighted Spaces of Holomorphic Functions on Banach Spaces
نویسنده
چکیده
Let BX and BY be the open unit balls of the Banach SpacesX and Y , respectively. Let V and W be two countable families of weights on BX and BY , respectively. Let HV (BX) (or HV0 (BX)) and HW (BY ) (or HW0 (BY )) be the weighted Fréchet spaces of holomorphic functions. In this paper, we investigate the holomorphic mappings φ : BX → BY and ψ : BX → C which characterize continuous weighted composition operators between the spaces HV (BX) (or HV0 (BX)) and HW (BY ) (or HW0 (BY )) . Also, we obtained a (linear) dynamical system induced by multiplication operators on these weighted spaces. Department of Mathematics and Statistics, College of Science, Sultan Qaboos University, P.O. Box 36, P. C. 123 Al-Khod, Sultanate of Oman E-mail address: [email protected] Date: Received: 12 October 2012; Accepted: 17 December 2012. 2010 Mathematics Subject Classification. Primary 47B33; Secondary 47B38, 47D03, 37B05, 32A10, 30H05.
منابع مشابه
Essential norm estimates of generalized weighted composition operators into weighted type spaces
Weighted composition operators appear in the study of dynamical systems and also in characterizing isometries of some classes of Banach spaces. One of the most important generalizations of weighted composition operators, are generalized weighted composition operators which in special cases of their inducing functions give different types of well-known operators like: weighted composition operat...
متن کاملA remark on boundedness of composition operators between weighted spaces of holomorphic functions on the upper half-plane
In this paper, we obtain a sucient condition for boundedness of composition operators betweenweighted spaces of holomorphic functions on the upper half-plane whenever our weights are standardanalytic weights, but they don't necessarily satisfy any growth condition.
متن کاملWeighted composition operators between growth spaces on circular and strictly convex domain
Let $Omega_X$ be a bounded, circular and strictly convex domain of a Banach space $X$ and $mathcal{H}(Omega_X)$ denote the space of all holomorphic functions defined on $Omega_X$. The growth space $mathcal{A}^omega(Omega_X)$ is the space of all $finmathcal{H}(Omega_X)$ for which $$|f(x)|leqslant C omega(r_{Omega_X}(x)),quad xin Omega_X,$$ for some constant $C>0$, whenever $r_{Omega_X}$ is the M...
متن کاملA special subspace of weighted spaces of holomorphic functions on the upper half plane
In this paper, we intend to define and study concepts of weight and weighted spaces of holomorphic (analytic) functions on the upper half plane. We study two special classes of these spaces of holomorphic functions on the upper half plane. Firstly, we prove these spaces of holomorphic functions on the upper half plane endowed with weighted norm supremum are Banach spaces. Then, we investigate t...
متن کاملGeneralized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces
Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013